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1 Objectives

It is well known that the exponential growth in computing power over the last
fifty years has accurately followed Moore’s Law (i.e. memory doubling every
18 months). Hence, by the about year 2020, the industry’s standard should be
atomic-scale computation (erasing a bit 1 nanometer in size should dissipate
only 1 kBT ). Manipulating information at this small scale requires a new
computing paradigm based on quantum mechanics: quantum computing [1,
2, 3, 4, 5, 6, 7]. In existing prototype quantum computers (NMR machines),
information is stored on spin-1

2 atomic nuclei [8, 9, 10, 11]. The machine
architecture uses no wires, no conventional processors, and no heat sinks
(when running reversible algorithms). The “computational substrate” is a
liquid and each“computational engine” is contained within a single molecule.

Several fundamental questions are raised: (1) What type of physical ex-
ploration, achieved by simulation and modeling, is possible using quantum
computers? (2) Are there really vast computational resources arising from
quantum superposition? (3) And, what are the quantum generalizations of
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the areas of classical universal logic, communications, factoring and search
algorithms, error correction, and control theory? Many theoretical physi-
cists, over the past several years, have focused on aspects of question No.3
[12, 5, 13, 14]. Many experimental physicists have more recently consid-
ered No.2, building prototype single-gate quantum computers as a first step
[8, 9, 10, 11]. The primary objective of my lattice-gas research (task 2304CP
initiated in 1992) has been to answer No.1 [15, 16, 17]. In addition, the ob-
jective of my quantum computing research (task 2304TD) is to address the
second question given that we now have certain answers to the first [18].

Specifically, we have a quantum algorithm to simulate the many-body
Schrödinger equation [19, 20, 21, 22] and, more practically, a quantum al-
gorithm to simulate a Navier-Stokes fluid on a network of small quantum
computers [15]. I stress the importance of the latter not only because CFD is
very relevant to the USAF modeling and simulation community, but because
of the present day feasibility of constructing a network of small quantum
computers. In collaboration with D. Cory and R. Nelson at the MIT Francis
Bitter Magnetic Lab, our objective is to build the first quantum computer
network (presently, we have designed an NMR quantum computer array and
expect to test a 1D prototype) [18].

2 Status of Effort

Traditional approaches to complex fluid simulation include “low-level” molec-
ular dynamics (MD) and “high-level” partial differential equation (PDE)
schemes. MD suffers from insufficient spatial and temporal scales to model
hydrodynamic scale behavior adequately. PDE schemes suffer from numerical
instabilities, coarseness in the physical description and in most cases a lack
of knowledge of the correct effective field theory to describe a complex fluid.
We have focused on lattice-gas schemes, a “mid-level” approach achieving
greater scales than MD while possessing unconditional numerical stability.
Due to its underlying physics-like microscopic dynamics, lattice gases capture
all relevant physics at the macroscopic scale without specifying an effective
field theory a priori. Our fluid models not only obey the conservation laws
(conserving mass, momentum, and energy) but they also obey the Second
Law of Thermodynamics (which drives the system towards thermal equilib-
rium by increasing entropy). Most high level PDE descriptions of fluids obey
the conservation laws but not the Second Law, and failing to do so gives rise
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to their numerical instabilities. Reversible lattice-gas algorithms are specially
suited to quantum computers and provide a way of “discretizing PDEs” and
modeling complex physical behaviors on quantum computers. The most well
understood lattice-gas algorithms apply to the simulation of Navier-Stokes
fluids [23, 24, 25, 26, ?, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41] and complex fluids (immiscible binary liquids and microemulsions)
[42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. Lattice-gas algorithms
are also known for electromagnetic waves and magnetohydrodynamics. The
only data operations used in quantum lattice-gas algorithms are reversible
permutations and superpositions [16] (the latter is based on the principle of
quantum mechanics known as the superposition of states). These operations
can be realized with a NMR quantum computer network.

3 Large Array of Small Quantum Computers

In the NMR machine, an ensemble of molecules (∼ 1018) embodies a single
“n-qubit quantum gate,” which is mathematically represented by a unitary
matrix in the group SU(n) (where n is a small number presently limited
to be ≤ 12) that acts on n-qubits in a 2n submanifold of the full Hilbert
space. Since a laboratory liquid sample comprises an Avagodro number of
molecules (∼ 6 × 1023) there are millions of quantum gates per mole (the
sample can be partitioned into a “Bravais lattice” with a gate at each node
of the lattice). In a large liquid sample (placed in the largest NMR machine at
the MagLab), a 5123 array of 12-qubit quantum gates can be accommodated
(massive classical parallelism).

There are many benefits to using such NMR arrays. The computational
medium is at room temperature (although surrounded by a supercooled su-
perconducting magnetic) and the experimental apparatus is nearly “off-the-
shelf” (costing about $150K in FY99 dollars). The large number of “iden-
tical” molecules per quantum gate gives a high signal-to-noise ratio when
“reading” the quantum state of a gate (affecting about one in a trillion
molecules of the gate). Since the atomic nuclei resonate at a unique Bloch
frequency fixed by an externally applied magnetic field (like a top processing
in a uniform gravity field), a uniform gradient in the field allows for spatial
localization within the network. Individual qubits are differentiated by en-
ergy level splitting arising from magnetic dipole-dipole coupling within the
molecule. This provides a means of “addressing” data within an individual
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gate. Since each node (with a ∼ 1 millimeter gate-size clocked at ∼ 1 kHz) is
effectively isolated from every other node (thermal diffusion of molecules in
the liquid causes them to move about a micron every millisecond), quantum
computation can be done independently and simultaneously across the entire
network. This allows for homogeneous parallel computation of the particle
collisions occurring at the nodes in the lattice. Furthermore, because of su-
perposition of classical electromagnetic fields, multiple quantum computer
nodes within the network can be simultaneously addressed. This allows for
parallel computation of the particles’ motion between the node-pairs (via
transmission of classical information).
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Figure 1: Theory vs. simulation comparison of the velocity dependence of the single-
particle distribution function in the non-Galilean parameterization: fa = 〈ψ|n̂a|ψ〉 =
d + dDêa · ~v + gdD(D/2 + 1)Q̂a : ~v~v (see ref. [16]). FHP simulation data is overplotted
on this predicted mesoscopic distribution function. Plots (a) and (b) are for background
densities of d = 0.20 and d = 0.25, respectively. A velocity shift is imparted along the
x-axis; that is, along the f1 direction indicated in the figure. Data was collected from a
128 × 128 classical FHP simulation (crosses) and coarse-grained averaged over 1600 time
steps from time step t = 400 to t = 2000 and collected from a smaller 32 × 32 quantum
FHP simulation (circles) measured at a single time step at t = 200.
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Figure 2: Kinematic shear viscosity of a quantum FHP lattice-gas simulation. “Calibra-
tion” test done on a 64 × 64 grid. The qubits are initially unentangled. The simulation
is initialized with a “long-wavelength” sinusoidal perturbation on the momentum density
field, equaling the system’s grid size. The peak amplitude of an exponentially decaying
shear wave is sampled every 4 out of 100 time steps. Simulation runs were carried out for a
range of reduced background densities, form d = 0.05 up to d = 0.55. The particle-particle
correlations are not neglected.

4 Quantum Lattice-Boltzmann Equation

My primary accomplishment has been to sort out the details for doing fluid
dynamics simulation on a quantum computer (a special test case application
of a general-purpose quantum-computing scheme). The algorithm requires
only short-range and short-term quantum entanglement, which has already
been demonstrated to work. (To be competitive with conventional comput-
ers, the other known quantum algorithms require millions of fully coherent
entangled qubits, not likely to be experimentally realized in the near future).
The crucial step is to reformulate the quantum wave equation (governing
the evolution of the quantum computer’s wavefunction, |Ψ〉) as a lattice-
Boltzmann equation. In the Heisenberg picture, the network’s evolution can
be expressed using a unitary streaming matrix, Ŝ, and a unitary collision
matrix, Ĉ, as follows

|Ψ(t + τ)〉 = eiĤτ/h̄|Ψ(t)〉 = ŜĈ|Ψ(t)〉. (1)

Writing the Hamiltonian, Ĥ, in (1) is done as a formality because only Ŝ
and Ĉ are known. An essential idea is to define the probability of finding a
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lattice-gas particle at position ~x moving in lattice direction a at time t by the
following matrix element: fa(~x, t) ≡ 〈Ψ(t)|n̂α|Ψ(t)〉, where n̂α is the number
operator for the αth-qubit associated with the lattice vector êa at the lattice
node at position ~x. If Ŝ is a permutation matrix (a unitary matrix with
component values of 0 or 1), causing particles to hop between neighboring
sites of the Bravais lattice (say from ~x to ~x + `êa), then (1) can be rewritten
exactly as the following lattice-Boltzmann equation [?]

fa(~x + `êa, t + τ) = fa(~x, t) + 〈Ψ(t)|Ĉ†n̂αĈ − n̂α|Ψ(t)〉. (2)

The collision matrix Ĉ, in separable tensor product form since it acts on each
lattice node independently, causes local quantum entanglement of outgoing
collisional configurations of the particles at each node.

On conventional workstations, I numerically simulated the lattice-Boltzmann
equation (2) using various approximations (quantum Monte Carlo, a sym-
bolic math solution using second-quantization formalism, and a scheme us-
ing wave-function collapse) [17]. I verified that detailed balance holds (see
Figure 1) and that there is a damped shear mode in the long-wavelength
hydrodynamic limit (see Figure 2) in the quantum lattice-gas system. The
numerical results agree with the analytical predictions.
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